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Abstract

The present study evaluated the dose-response effects of subacute exposure to sublethal doses of the organophosphorus (OP) chemical
warfare nerve agent (CWNA) sarin (GB) on the operant behavior of guinea pigs. Dietary restricted guinea pigs, trained to respond for food
under a progressive ratio (PR) schedule of reinforcement, were injected five times per week (Monday-Friday) for 2 weeks with fractions
(0.1, 0.2, and 0.4) of the established LD50 of GB (42 gsg/kg). Changes in body weight, whole blood (WB) acetylcholinesterase (AChE) levels,
and operant performances were monitored over the 2 weeks of GB exposure and for an additional 2 weeks following the termination of
exposures. There were dose-related changes in body weight and WB AChE levels throughout the exposure and post-exposure periods.
Several parameters of PR performance were disrupted during exposure to 0.4 LD50 GB, however, concurrent weight loss indicated the
presence of overt toxicity. PR performance recovered following the termination of exposures. Lower doses (0.1 and 0.2 LD5o) of GB failed to
produce reliable effects on operant performance during the exposure period. Overall responding decreased during exposure to 0.4 LD50 GB,
resulting in reduced response rates and break points. The decrease in overall response rates was attributed to an increase in pausing since
there was no decrease in running rate. Motor effects of 0.4 LD 50 GB were evident as an increase in the proportion of lever press durations
> 1.0 s. In the present study, doses of GB lower than 0.4 LD 50 produced no marked alteration of operant performance in guinea pigs,
although WB AChE levels were maximally inhibited to 20% of control.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Sarin; GB; Nerve agents; Operant behavior; Progressive ratio; Guinea pigs

1. Introduction level exposure to organophosphorus (OP) chemical warfare
nerve agents (CWNA). CWNA (e.g., satin, soman, and VX)

Recent world events such as the terrorist attacks are highly toxic OP compounds that are chemically related

perpetrated against Japanese civilians, the possible exposure to the OP insecticides commonly used for pest control and
of US soldiers to sarin (GB) during the 1991 Persian Gulf have similar toxicological profiles [ 11]. The acute effects of

War, and efforts to destroy aging chemical weapon stock- OP compounds are a result of the disruption of normal
piles have increased interest in the effects of repeated low communication within the nervous system through the

irreversible binding of acetylcholinesterase (AChE), the

S In conducting the research described in this report, the investigators enzyme responsible for the degradation of the neuro-

adhered to the Guide for the Care and Use of Laboratory Animals by the transmitter acetylcholine (ACh). The inability to degrade
Institute of Laboratory Animal Resources, National Research Council, in ACh leads to excessive accumulation of this neurotransmit-
accordance with the stipulations mandated for an AAALAC accredited ter at central and peripheral synapses resulting in over
facility. The opinions or assertions contained herein are the private views of stimulation of postsynaptic membranes [75]. The choliner-
the author(s) and are not to be construed as official or as reflecting the gic signs and symptoms resulting from exposure can include
views of the Department of the Army or the Department of Defense.

* Corresponding author. Tel.: +1 410 436 2723; fax: +1 410 436 1960. miosis, headache, nausea, dizziness, anxiety and restless-
E-mail address: Jeffrey.Langston@us.army.mil (J.L. Langston). ness, muscle fasciculations and weakness, tremor, incoor-

0892-0362/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi: I0.1016/j.ntt.2005.06.015
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exposures. There were dose-related changes in body weight and WB AChE levels throughout the exposure and post-exposure periods.
Several parameters of PR performance were disrupted during exposure to 0.4 LD50 GB, however, concurrent weight loss indicated the
presence of overt toxicity. PR performance recovered following the termination of exposures. Lower doses (0.1 and 0.2 LD5o) of GB failed to
produce reliable effects on operant performance during the exposure period. Overall responding decreased during exposure to 0.4 LD 50 GB,
resulting in reduced response rates and break points. The decrease in overall response rates was attributed to an increase in pausing since
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dination, emesis, abdominal cramps, diarrhea, sweating, sive ratio schedule requires the animal to emit an increasing
salivation, tearing, rhinorrhea, and phlegm [ 11]. The life- number of responses to obtain each successive reinforcer and
threatening effects of high doses (dose that produces acute was selected because it represents acquired behavior,
cholinergic signs and symptoms) of these agents include provides a measure of motivation [36,56,57], and has been
unconsciousness and coma, seizures, respiratory depression, demonstrated to be sensitive to the effects of AChE
and death due to cardiorespiratory collapse if the poisoning inhibitors [26,84]. An additional consideration was that the
is not promptly and aggressively treated. The acute effects progressive ratio schedule has been suggested to potentially
of high doses of these agents and their neuropharmaco- provide more information than a fixed-ratio schedule [681.
logical bases are well characterized [50]. Characterization of
the effects of repeated low dose (dose that produces minimal
cholinergic signs and symptoms) exposure to these agents, 2. Methods
however, is sparse [69].

Behavioral incapacitation often results from acute expo- 2.1. Animals
sure to relatively high doses of OP compounds [9,29,32,86];
moreover, subtle behavioral alterations may be evident Forty-four male Hartley guinea pigs (Crl:(HA)BR)
following repeated low dose exposure [33,49]. For example, weighing 250±20 g, were obtained from Charles River
a recent report indicated a failure of GB-exposed guinea Laboratories (Kingston, NY). Upon arrival they were
pigs to habituate to certain aspects of functional observation quarantined for 5 days and observed for evidence of disease.
battery testing [38]. Other reports have indicated that long- Animals were housed individually in polycarbonate cages in
term changes in EEG patterns [12,85], alterations of the a temperature (21±2 °C) and humidity (50±10%) con-
temporal patterning of operant responding [39,40], super- trolled colony room maintained on a 12-h light-dark cycle
sensitivity to the acute effects of anticholinergic drugs [53], with lights on at 0600 h. Food and water were available ad
performance decrements on a compensatory tracking task libitum in home cages. Animals were implanted subcuta-
[6], impaired acquisition of a spatial navigation task [66,67], neously (sc) with sterile transponders (IPTT-200; BioMedic
increased startle response (M.L. Sipos, personal communi- Data Systems Inc., Seaford, DE) for animal identification
cation), and development of attention deficits [27] result and body temperature monitoring. Animals were allowed to
from repeated sublethal exposure to OP compounds in acclimate to the colony room (> 1 week) and to reach 375 g
rodents and nonhuman primates. body weight before their feed was restricted to 80% of daily

Current medical research to evaluate the toxic effects of recommended diet (60 g/kg). Daily feedings occurred in the
CWNA is focused on the use of a guinea pig model afternoon not less than 1 h after behavioral sessions were
[1,38,76]. The guinea pig is considered to be a more valid conducted.
rodent model of human exposure than either the rat or
mouse [2,24,41,79,80]. This is partly due to the relatively 2.2. Apparatus
low concentration of plasma carboxylesterases (CaE)
present in guinea pigs compared with rats and mice [47], Sixteen conventional rodent operant conditioning cham-
making the guinea pig's response to the toxic effects of bers (30.5 x 24.1 x 29.2 cm [Dx W x H]; Med-Associates,
CWNA more similar to that of nonhuman primates and, Georgia, VT) were used. Each chamber was enclosed in a
presumably, humans. CaE are another esterase that OP ventilated, light- and sound-attenuating cubicle and equip-
compounds irreversibly bind with and have an important ped with two response levers (requiring approximately 0.22
role in the detoxification process because they stoichio- N to operate), an opening centered between the levers
metrically reduce the amount of an OP compound available through which 45-mg food pellets (Bio-Serv, Frenchtown,
to inhibit AChE [25,45-48]. The lower concentrations of NJ) could be delivered, and a cue light above each lever. The
CaE in the guinea pig contribute to an increased sensitivity food trough contained an infrared emitter-detector pair for
to the lethal effects of CWNA as well as to increased monitoring entries. Illumination of the chamber was accom-
efficacy of pretreatment drugs [22,30] compared with other plished via a house light mounted on the wall opposite the
rodent species. Furthermore, toxicokinetic studies reported response levers. White noise was generated from a speaker
that the concentration time profile of an OP compound in located beneath the house light. Reinforcement contingen-
guinea pig resembles that of the marmoset monkey more cies and data collection were accomplished with 0.01 s
closely than that of the rat [2]. resolution using a Pentium microcomputer running MED-

The present study evaluated the dose-response effects of PC® software (Med-Associates, Georgia, VT).
subacute exposure to sublethal doses of GB on progressive
ratio responding of guinea pigs. The range of doses chosen 2.3. Procedure
was based on the results of previous studies [1,38] that
showed 0.4 LD50 GB was the maximum tolerated dose Subjects were acclimated to the operant test chambers for
(MTD) that could be administered for 2 weeks without 1 week by placing them in the chambers daily for 10 min.
producing signs of acute cholinergic toxicity. The progres- During acclimation sessions, the house and cue lights were
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illuminated and food was available in the food trough. points. Blood samples were collected approximately 30 min
Subsequently, subjects were trained to lever press using a after behavioral sessions had ended. The first collection time
modified autoshaping procedure (concurrent variable-time was after the final saline injection to establish baseline
90 s, fixed-ratio 1). Under this procedure, free food was AChE levels and the last collection period was 17 days after
delivered on average every 90 s; however, presses of the left the last exposure. Whole blood (WB) AChE activity was
lever resulted in reinforcer presentation. Presses of the right determined by an automated method using a COBAS/FARA
lever were recorded but had no programmed consequences. clinical chemistry analyzer (Roche Diagnostics, Nutley, NJ).
After 10 left lever presses, the schedule converted to a fixed- The analytical procedure was based on the manual method
ratio 1 (FR 1) schedule of reinforcement. Thereafter, only of Ellman et al. [23] and modified for the COBAS/FARA
responses on the left lever contributed to meeting the system [35] using acetylthiocholine as substrate.
schedule requirements. Sessions lasted for 60 min or 100
reinforcer presentations, whichever occurred first. Once 2.6. Data analysis
lever pressing had been acquired, subjects were exposed to
FR 1 contingencies for two additional sessions before Break point denotes the highest ratio requirement
progressive ratio (PR) contingencies were introduced, completed to earn the last reinforcer of a session and is
Terminal performance was maintained under a PR 1 identical to the number of reinforcers obtained in a session
schedule; thus, following the delivery of each reinforcer due to the progressive-ratio algorithm implemented. Overall
the response requirement increased by 1. For training rate of responding was expressed as responses per second
purposes, however, an initial dwell time (the number of and determined by dividing the total number of left lever
reinforcers obtainable at each response requirement) of 50 responses by the session duration (in s). Correlations among
was used to ensure that responding would not extinguish. break point, response rate, and total responses were high
Subjects then progressed rapidly through a series of dwell [mean correlations (std. dev.) of 0.96 (0.122), 0.99 (0.004),
times that decreased by a factor of 2 (e.g. 50, 25, 12, 6, 3, 2) and 0.97 (0.113) for break point-response rate, break
before the terminal conditions were implemented. Sessions point-total responses, and response rate-total responses,
were conducted 5 days per week (M-F) between 0900 and respectively]; therefore, effects reported for one measure
1500 hours and lasted for 30 min or 100 reinforcer will be representative of effects on the others, unless
deliveries, whichever occurred first. Training continued otherwise noted. Individual lever press durations (LPDs)
until each animal's behavior was determined to be stable and true interresponse times (IRTs) [54] were used for the
by visual inspection of the data (43 sessions). Next, subjects following analyses. Pause duration was defined as the
were assigned to dose groups (n = 11 per group) by proportion of session time occupied by interresponse times
matching based on performance during the final week of (IRTs) > 5.0 s [20]. Hold duration was defined as the
baseline and received either saline vehicle or one of three proportion of total lever press duration occupied by lever
doses of GB (see next section). presses > 1.0 s. Running rate was computed from IRT

distributions, eliminating IRTs classified as pauses (IRTs
2.4. Sarin administration >5.0 s).

GB effects on AChE activity, break point, and response
Isopropyl methylphosphonofluoridate (satin; GB) was rate were expressed as a percentage of baseline perform-

obtained from the US Army Edgewood Chemical Bio- ance. Two-way (Treatment X Block) ANOVAs were
logical Center (Aberdeen Proving Ground, MD) and was conducted for each dependent variable with repeated
diluted in sterile saline to achieve the desired concentrations measures based on the mean of blocks of 5 sessions. Due
(0.1, 0.2, 0.4 LD5o, LD 50 =42 jig/kg [38]; equivalent doses to violations of assumptions of homogeneity of variance,
of 4.2, 8.4, and 16.8 jig/kg, respectively). The dilute nerve break point and response rate data were log transformed
agent was aliquoted into serum vials (one for each day), prior to ANOVA; hold and pause data were arcsine
sealed with Teflon septa and stored at - 80 'C until the day transformed prior to ANOVA. Physiological indices of
of injection. Injections were administered sc between the exposure (weight change, body temperature, and AChE
shoulder blades in a volume of 1.0 mI/kg body weight. activity) were analyzed untransformed. WB AChE data
Beginning one week prior to GB exposures, all animals were analyzed by two-way repeated measures ANOVA with
received daily (M-F) saline injections to acclimate them to treatment as the between subject's factor and collection time
the injection procedures. For the next 2 weeks, GB or saline as the repeated measure. For all analyses, Hyunh-Feldt's
was administered daily (M-F). Behavioral sessions began procedure was used to adjust for violations of assumptions
30 min after each injection. of sphericity of repeated measures and adjusted P values are

reported. Main effects of block were evaluated using
2.5. AChE activity Bonferroni's procedure. Main effects of treatment were

evaluated with Tukey's procedure. Significant interactions
Blood samples (0.5-1.0 ml) were collected weekly were followed by tests of simple main effects. For all

(Friday) via toenail clips [82] from all animals at six time analyses, ot=0.05.
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the response requirement increased by 1. For training rate of responding was expressed as responses per second
purposes, however, an initial dwell time (the number of and determined by dividing the total number of left lever
reinforcers obtainable at each response requirement) of 50 responses by the session duration (in s). Correlations among
was used to ensure that responding would not extinguish. break point, response rate, and total responses were high
Subjects then progressed rapidly through a series of dwell [mean correlations (std. dev.) of 0.96 (0.122), 0.99 (0.004),
times that decreased by a factor of 2 (e.g. 50, 25, 12, 6, 3, 2) and 0.97 (0.113) for break point-response rate, break
before the terminal conditions were implemented. Sessions point-total responses, and response rate-total responses,
were conducted 5 days per week (M-F) between 0900 and respectively]; therefore, effects reported for one measure
1500 hours and lasted for 30 min or 100 reinforcer will be representative of effects on the others, unless
deliveries, whichever occurred first. Training continued otherwise noted. Individual lever press durations (LPDs)
until each animal's behavior was determined to be stable and true interresponse times (IRTs) [54] were used for the
by visual inspection of the data (43 sessions). Next, subjects following analyses. Pause duration was defined as the
were assigned to dose groups (n = 11 per group) by proportion of session time occupied by interresponse times
matching based on performance during the final week of (IRTs) Ž 5.0 s [20]. Hold duration was defined as the
baseline and received either saline vehicle or one of three proportion of total lever press duration occupied by lever
doses of GB (see next section). presses > 1.0 s. Running rate was computed from IRT

distributions, eliminating IRTs classified as pauses (IRTs
2.4. Sarin administration > 5.0 s).

GB effects on AChE activity, break point, and response
Isopropyl methylphosphonofluoridate (sarin; GB) was rate were expressed as a percentage of baseline perform-

obtained from the US Army Edgewood Chemical Bio- ance. Two-way (Treatment X Block) ANOVAs were
logical Center (Aberdeen Proving Ground, MD) and was conducted for each dependent variable with repeated
diluted in sterile saline to achieve the desired concentrations measures based on the mean of blocks of 5 sessions. Due
(0.1, 0.2, 0.4 LD5 o, LD 50 =42 jig/kg [38]; equivalent doses to violations of assumptions of homogeneity of variance,
of 4.2, 8.4, and 16.8 gig/kg, respectively). The dilute nerve break point and response rate data were log transformed
agent was aliquoted into serum vials (one for each day), prior to ANOVA; hold and pause data were arcsine
sealed with Teflon septa and stored at - 80 °C until the day transformed prior to ANOVA. Physiological indices of
of injection. Injections were administered sc between the exposure (weight change, body temperature, and AChE
shoulder blades in a volume of 1.0 ml/kg body weight. activity) were analyzed untransformed. WB AChE data
Beginning one week prior to GB exposures, all animals were analyzed by two-way repeated measures ANOVA with
received daily (M-F) saline injections to acclimate them to treatment as the between subject's factor and collection time
the injection procedures. For the next 2 weeks; GB or saline as the repeated measure. For all analyses, Hyunh-Feldt's
was administered daily (M-F). Behavioral sessions began procedure was used to adjust for violations of assumptions
30 min after each injection. of sphericity of repeated measures and adjusted P values are

reported. Main effects of block were evaluated using
2.5. AChE activity Bonferroni's procedure. Main effects of treatment were

evaluated with Tukey's procedure. Significant interactions
Blood samples (0.5-1.0 ml) were collected weekly were followed by tests of simple main effects. For all

(Friday) via toenail clips [82] from all animals at six time analyses, a=0.05.
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3. Results groups, respectively. Post hoc tests of the main effects of
Treatment revealed that AChE levels of each group were

3.1. WB AChE Activity significantly different from those of the other groups
(P<0.001) with the exception that those from the 0.4 LD5 0

Exposure to fractions of the LD5o of GB resulted in dose- and 0.2 LD50 groups did not differ. WB AChE levels had
dependent inhibition of WB AChE (Fig. 1). The two-way returned to baseline control values by 17 days following the
repeated measures ANOVA of percent control WB AChE last exposure to GB.
activity revealed a significant main effect of Treatment
[F(3,37)=104.48, P<0.001], a significant main effect of 3.2. Weight changes
Collection Time [ F(5,185) = 123.40, P < 0.001 ], and a signi-
ficant Treatment x Collection Time interaction [F(15, There were dose-related changes in the body weight gains
185)=30.38, P<0.001]. By the end of the first week of GB of the guinea pigs over the course of the GB exposure period
exposure, WB AChE levels were inhibited to 62%, 19%, and and the post-exposure assessment period. Fig. 2 shows
5% of control for the 0.1, 0.2 and 0.4 LD50 groups, the average weight gain (± SEM) per session (calculated as
respectively. These values were significantly different from the animal's weight on day n minus the animal's weight
each other as well as from those of the control group on the day prior to the first day of baseline). A two-way
(P<0.001). Following the second week of exposure WB repeated measures ANOVA of the average weekly weight
AChE levels where maximally inhibited to 40%, 16%, and gain revealed significant main effects of Treatment [F(3,
2% of baseline control values for the 0.1, 0.2, and 0.4 LD50  40)=5.56, P<0.01], Block [F(5,200)=508.72, P<0.001],
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Fig. 1. WB AChE levels as a function of collection time. Blood was collected via toe-nail clip on Fridays during GB exposure and AChE levels were
determined using standard measures. Values are expressed as mean ± SEM with a minimum of n= 10 samples (each run in triplicate) for each data point.
Following the ifilh and 10th days of GB injections, WB AChE levels exhibited a dose-response relationship with each exposure group differing significantly
from all other groups (P<0.001). One week following the termination of GB injections, WB AChE levels began to recover and by 17 days following the last
exposure they had recovered to control levels.
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Fig. 1. WB AChE levels as a function of collection time. Blood was collected via toe-nail clip on Fridays during GB exposure and AChE levels were
determined using standard measures. Values are expressed as mean ± SEM with a minimum of n = 10 samples (each run in triplicate) for each data point.
Following the fifth and 10th days of GB injections, WB AChE levels exhibited a dose-response relationship with each exposure group differing significantly
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Fig. 2. Weight change as a function of session number. Weight change is the deviation between body weights prior to a given session and initial weight,
determined prior to session 43. Values represent mean ± SEM with n = I I for each data point. There is a dose-related change in weight gain; the 0.4 LD5o GB
animals gained significantly less weight than animals receiving saline (P<0.005).

and a significant Treatment x Block interaction [F(15, main effects of Treatment [F(3,40)=2.89, P<0.05] and
200)=7.88, P<0.001]. The control animals gained more Block [F(5,200)=11.61, P<0.001], however, the Treat-
weight throughout the 6 weeks of assessment than did the 0.4 ment x Block interaction failed to reach conventional levels
LD 50 animals. The difference in weight gain between the of significance [F(15,200)= 1.68, P>0.13]. The main effect
control animals and the 0.4 LD50 animals became apparent of Treatment revealed that the temperatures from the 0.4
during the initial week of GB exposure, and this difference LD50 animals were lower than those of the 0.2 LD50 animals
remained until the experiment was terminated. As seen in (P<0.05). The main effect of Block revealed that the
Fig. 2, animals exposed to 0.4 LD50 GB lost weight during temperatures during the 2 weeks of post-exposure assess-
the first week of exposure. Differences in weight gain ment were lower than the previous 4 weeks, but not different
between the 0.4 LD 50 animals and all other GB-exposed from each other. The statistically significant effects on
animals were evident during the second week of GB temperatures are suspected to be due primarily to the
exposure. The 0.4 LD50 animals' weight gains were also decrease in recorded temperatures for the 0.4 LD50 animals
below those of the 0.2 LD 50 animals during the first post- during the 2 weeks of post-exposure assessment and may
exposure week. have been due to transponder reliability.

3.3. Body temperature 3.4. Molar analysis of progressive ratio performance

Body temperatures were collected daily prior to behav- As seen in the upper panel of Fig. 3, the 0.4 LD50 dose of
ioral testing (approximately 23 h post-exposure) and the GB resulted in decreased break points during the 2-week
weekly group means (± SEM) are presented in Table 1. A exposure period. There were no significant main effects of
two-way repeated measures ANOVA revealed significant Treatment or Block; however, there was a significant
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Fig. 2, animals exposed to 0.4 LD 50 GB lost weight during temperatures during the 2 weeks of post-exposure assess-
the first week of exposure. Differences in weight gain ment were lower than the previous 4 weeks, but not different
between the 0.4 LD50 animals and all other GB-exposed from each other. The statistically significant effects on
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exposure. The 0.4 LD50 animals' weight gains were also decrease in recorded temperatures for the 0.4 LD50 animals
below those of the 0.2 LD50 animals during the first post- during the 2 weeks of post-exposure assessment and may
exposure week. have been due to transponder reliability.

3.3. Body temperature 3.4. Molar analysis of progressive ratio performance

Body temperatures were collected daily prior to behav- As seen in the upper panel of Fig. 3, the 0.4 LD 50 dose of
ioral testing (approximately 23 h post-exposure) and the GB resulted in decreased break points during the 2-week
weekly group means (± SEM) are presented in Table 1. A exposure period. There were no significant main effects of
two-way repeated measures ANOVA revealed significant Treatment or Block; however, there was a significant
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Table I
Effect of GB exposure on body temperature in guinea pigs

Observation GB dose group

Period Control 0.1 x LD50  0.2 x LDoa 0.4 x LD,0 a

Baselineb 101.18 (0.13) 100.85 (0.12) 101.28 (0.15) 100.97 (0.07)
Salineb,, 101.17 (0.10) 100.92 (0.09) 101.35 (0.14) 101.03 (0.11)
GB week Ib'c 101.16 (0.15) 101.09 (0.09) 101.32 (0.12) 101.04 (0.13)
GB week 2 b.c 101.16 (0.13) 100.88 (0.08) 101.25 (0.11) 100.89 (0.22)
Post week 1 100.97 (0.13) 100.81 (0.10) 101.18 (0.13) 100.30 (0.40)
Post week 2 100.83 (0.11) 100.76 (0.12) 101.15 (0.14) 100.48 (0.21)

Values are mean body temperature (7F) measured I h prior to behavioral sessions (- 30 min prior to injection). Numbers in parentheses are SEM.
"Indicates significantly different from each other (P<0.05).

b Indicates significantly different from post week 2 (P<0.05).
Indicates significantly different from post week I (P<0.05).

Treatment xBlock interaction [F(5,200)=3.01, P<0.01]. control group during the second week of exposure
Break points of the 0.4 LD50 GB animals were significantly (P<0.04). Break points for the 0.4 LD50 animals during
less than those of all other groups during the first week of the first week of exposure were also significantly less than
exposure (P<0.05) and significantly less than those of the their own pre-exposure and post-exposure break points
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Fig. 3. Break point (upper) and overall response rate (lower) of guinea pigs responding under a PR schedule of food reinforcement expressed as a percentage of
baseline values. Values are mean ± SEM with n = I 1 for each data point. Break points for animals receiving 0.4 LDso GB were significantly lower than those for
the animals receiving either 0.1 or 0.2 LD50 GB (P<0.05) during the first week of exposures. During the second week of GB injections, the break points for
animals receiving 0.4 LD5o GB were significantly less than for those receiving saline (P<0.05). Due to the high correlation between break points and response
rates, a similar pattern of results was obtained for overall response rates. See text for additional details.
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Break points of the 0.4 LD50 GB animals were significantly (P<0.04). Break points for the 0.4 LD50 animals during
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Fig. 3. Break point (upper) and overall response rate (lower) of guinea pigs responding under a PR schedule of food reinforcement expressed as a percentage of
baseline values. Values are mean ± SEM with n = I I for each data point. Break points for animals receiving 0.4 LD5 0 GB were significantly lower than those for
the animals receiving either 0.1 or 0.2 LD50 GB (P<0.05) during the first week of exposures. During the second week of GB injections, the break points for
animals receiving 0.4 LD50 GB were significantly less than for those receiving saline (P<0.05). Due to the high correlation between break points and response
rates, a similar pattern of results was obtained for overall response rates. See text for additional details.
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(P<0.005). Similarly, break points from these animals main effects of Treatment nor was there a significant
during the second week of exposure were significantly less Treatment x Block interaction, indicating that within ratio
than those from the post-exposure period (P<0.002). responding was not disrupted.

Overall response rates tended to increase slightly over the Exposure to 0.4 LD50 GB produced an increase in the
time course of the study shown in the lower panel of Fig. 3, proportion of IRTs > 5.0 s (Fig. 5). There were significant
although this was not statistically significant (P>0.05). Due main effects of Treatment [F(3,40)=-3.50, P<0.03] and
to the high correlation between break point and response Block [F(5,200)=4.65, P<0.004], and a significant Treat-
rate, the pattern of effects noted for break points is mentxBlock interaction [F(15,200)--2.76, P<0.005].
consistent with the pattern of effects found for overall Overall, pause durations of the 0.4 LD50 group were
response rates with the exception that during the first week significantly different from those of the 0.1 LD50 group.
of exposure response rates for the 0.4 LD5 0 animals were Pause durations during baseline were significantly lower
not different from those of the control group (P=0.086). than those during the first week of exposure (P<0.01) and

during the second week post-exposure (P<0.005). During
3.5. Molecular analysis of progressive ratio performance both weeks of GB exposure, pause durations for the 0.4

LD50 group were significantly greater than those for the
Running rate, expressed as a percentage of baseline control and 0.1 LD50 groups. Pause durations of the 0.4

performance is presented in Fig. 4. Running rate tended to LD5 o group during the first week of GB exposure were
increase across Blocks [F(5,200) = 4.61, P <0.01]; however, significantly greater compared with their own values from
due to adjustments made for multiple comparisons no both the baseline and saline blocks (P<0.01). Similarly, the
differences between blocks could be stated. There were no pause durations of this group during the second week of GB
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Fig. 4. Percent control running rate computed from IRT distributions eliminating pauses (IRTs >5.0 s). Values are mean ± SEM with n = 11 for each data point.
As seen in the figure, there was a trend toward increasing running rates during the GB exposure and post-exposure periods. There were no statistically reliable
effects of Treatment, Block, or Treatment x Block interaction on running rates.
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Fig. 4. Percent control running rate computed from IRT distributions eliminating pauses (IRTs >5.0 s). Values are mean-±SEM with n = II for each data point.
As seen in the figure, there was a trend toward increasing running rates during the GB exposure and post-exposure periods. There were no statistically reliable
effects of Treatment, Block, or Treatment x Block interaction on running rates.
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Fig. 5. Pause duration (proportion of session time occupied by pauses> 5.0 s) for each exposure group as a function of session number. Pause duration
increased for guinea pigs exposed to 0.4 LD50 GB during the 2 weeks of injection and were significantly higher than those from animals receiving saline or 0. 1
LD0 GB (P<0.03),

exposure were significantly different from those generated rates of guinea pigs responding for food under a PR
by this group during the baseline, saline, and both post- schedule of reinforcement during the exposure period. The
exposure blocks (P<0.04). reduction in response rates was attributed to increased

The effects of GB exposure on hold duration (proportion pausing, since running rate increased slightly over the same
of LPDs > 1.0 s) are displayed in Fig. 6. The main effect of time period. Motor effects of 0.4 LD50 GB were evidenced
Treatment was not significant [F(3,40)=0.39, P>0.7] nor as an increase in the proportion of lever presses that
was there a main effect of Block [F(5,200)= 1.20, P>0.3 1]. exceeded 1.0 s in duration (hold duration). Behavior
However, there was a significant Treatment x Block inter- recovered rapidly following the termination of exposure.
action [F(l5,200)=3.44, P<0.001]. Hold durations for the There was little evidence that doses of GB lower than 0.4
0.4 LD50 group during the first week of GB exposure LD50 resulted in behavioral alterations as measured in the
increased significantly when compared with those from their present study. GB exposure produced dose-related inhibition
own baseline and saline blocks (P<0.01). Similarly, during of WB AChE activity throughout the exposure period but
the second block of GB exposure, hold durations for this had recovered by 17 days post-exposure. Weight loss was
group were increased when compared with their own also evident in those animals receiving 0.4 LD 50 GB,
baseline, saline and second post-exposure blocks (P <0.03). despite supplemented daily rations (to accommodate for

decreased reinforcement rate) and no evidence to indicate
decreased food consumption in their home cages.

4. Discussion The weight loss of the animals exposed to 0.4 LD50 GB
in the present study is inconsistent with previous inves-

In the present investigation, repeated exposure to 0.4 tigations [1,38]. In these earlier studies, this dose did not
LD50 GB produced a decrease in break points and response produce weight loss; however, unlike animals in the present
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Fig. 6. Hold duration (proportion of total response time occupied by lever presses > 1.0 s) as a function of session number for each GB exposure group. Hold
durations were increased during the 2 weeks of GB injections for guinea pigs exposed to 0.4 LD50 as compared with their own baseline performance.

study, animals in earlier studies were not maintained under OP nerve agent [74]. Others, however, have reported the
dietary restriction nor were they subjected to an extended development of tolerance to decreases in both food and
pre-exposure training period. One possible explanation for water consumption of deprived animals following chronic
the weight loss of the animals exposed to 0.4 LD5 o GB in administration of the OP diisopropyl fluorophosphate (DFP)
the present study is that older animals have been shown to [15,71]. It has also been reported that tolerance develops to
be more sensitive to the acute effects of CWNA [28,58,77]. the suppression of feeding following chronic administration
In those studies, the LD 50 values for 120 day old rats and of the OP paraoxon when animals were given restricted
mice were approximately 0.6 of the LD50 values for 30 day access to a liquid diet [3]. Additionally, challenge by acute
old animals. Others [74] have observed a decrease in the administration of chlorpyrifos following chronic DFP
LD 50 values of soman in water-deprived animals as resulted in transient weight loss of food restricted animals
compared to non-deprived animals. The guinea pigs in the [14]. Furthermore, repeated exposure to 0.5 LD50 but not
present study were approximately 130 days old when 0.4 LD50 GB resulted in decreased weight gain in ad lib fed
exposures began and the reference LD50 values [38] were guinea pigs [38] and there was no evidence for the
based on animals approximately 4-6 weeks old (based on development of tolerance to this effect. The reasons for
standard growth data). The influence of age on the acute these discrepancies in effects of subacute administration of
toxicity of CWNA in guinea pigs is (to the authors' GB on weight gain from this laboratory are, at present,
knowledge) unknown, however, studies are currently under- unclear; however, previous reports suggest that under
way to examine the influence of age and dietary restriction restricted feeding conditions weight loss typically occurs
on the acute lethality of CWNA in this species. following repeated exposure to OPs.

In contrast to the present data, there was no reported The reduction in break points in the present study is
weight loss for rats maintained under restricted fluid intake consonant with the effects of acute administration of both
when exposed to approximately 0.5 LD50 soman, another centrally and peripherally acting carbamates on PR respond-
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ing [26,84]. Similarly, the transient decrease in responding was inhibited by 43% following a single sc dose of 0.4 LD50
following GB exposure in the present investigation is GB (M.R. Roberson, personal communication). Hulet et al.
consistent with the acute effects of soman on behavior [38] reported a 65% inhibition of RBC AChE activity
maintained under FR schedules of reinforcement [9,10,32]. following the administration of the second daily dose of 0.4
In those studies, acute exposure to soman reduced respond- LD50 GB to guinea pigs. It has been suggested that the rate
ing during the session immediately following exposure and of inhibition of AChE activity is an important determinant
there was no evidence of response suppression thereafter, for the appearance of behavioral effects following OP
Furthermore, repeated soman administration has been exposure [8,15,33,69]. In humans, the onset of symptoms
reported to initially suppress schedule controlled behavior following acute exposure to OP compounds is correlated
[39,40,74]; however, with repeated administration behavior with inhibition of RBC ChE activity by approximately 50-
recovers to baseline levels indicating the possible develop- 80% [31,69]; however, following repeated administration of
ment of behavioral tolerance. The evidence of behavioral lower doses over several days there was no correlation
tolerance from the present data is scant; however, the effects between the onset of symptoms and RBC ChE activity [31 ].
of 0.4 LD50 GB seen in Figs. 3 and 5 indicate a reduction in In rhesus monkeys, the acute administration of soman, in
the maximal effect during the second week of exposures as doses sufficient to inhibit serum AChE by 70%, produced
compared with the first week of exposures and this is performance deficits [6,7,33]; however, repeated adminis-
consistent with the weight gain data presented in Fig. 2. This tration of lower doses of soman did not result in perform-
moderate increase in responding during the second week of ance deficits until serum AChE activity was inhibited by
exposures may be due to behavioral tolerance, since this 80-90% [4,5,8,33]. In marmosets, the acute administration
effect has been reported previously for rats responding of GB at doses ranging 0.13-0.55 LD50 resulted in RBC
under simple [55,74,73,72] or multiple [39,40,53] schedules AChE or WB ChE inhibitions ranging from 45% to >99%;
of reinforcement following exposure to soman and other OP behavioral effects appeared only at doses producing > 75%
compounds. However, the animals were not exposed during WB ChE [88] or >88% RBC AChE inhibition [21]. In rats
the weekends and there was opportunity for a 2-day exposed daily to soman at 0.5 LD 50 , behavioral effects
recovery between testing weeks and this may have led to (increased flinch threshold, decreased locomotor activity,
the diminished maximal effect observed during the second decreased reinforcement rate FI 30s schedule) and physio-
week of exposures. The importance of both the dosing and logical signs (hypothermia) were present following the third
testing intervals in the development of behavioral tolerance consecutive day of exposure when RBC AChE activity was
to organophosphates are well known [3,70,87] and it has 22% of control [74]. Additionally, in rats exposed repeat-
been shown that as there is a positive relationship between edly to chlorpyrifos, behavioral effects (increased choice
the interval between dosing and testing and the rate of latency and nosepoke IRT) were evident at WB ChE
development of behavioral tolerance [87]. Weekend recov- activities less than 25% of control [13].
ery effects on behavior are most prominently seen in Figs. 3 The failure to detect behavioral effects following daily
and 5 between sessions 58 and 59. Hulet et al. [38] reported exposure to 0.2 LD 5o GB despite significant reductions in
a 17% increase in RBC AChE levels in animals exposed to WB AChE activity combined with the appearance of
0.4 LD50 GB following weekend recovery using an identical behavioral effects in animals exposed to 0.4 LD5 o GB
dosing regimen and species. concurrently with overt signs of toxicity (weight loss) raises

The increased pausing in the 0.4 LDSO GB animals of the questions concerning the experimental model chosen. The
present study is consistent with the effects of acute [29] and guinea pig is the rodent species of choice for investigations
repeated [27] administration of soman on trials worked in a interested in the acute lethality of CWNA as well as those
match to sample procedure. Similarly, acute administration investigating prophylactic and/or medical countermeasures
of physostigmine, a carbamate cholinesterase inhibitor, for CWNA exposure; this is due partly to lower levels of
resulted in increased session completion times of monkeys CaE [25,45-48,58] and to the greater similarity of the
working under repeated acquisition [59] and match to guinea pig toxicokinetic profile for OP compounds to
sample procedures [60] when session length was controlled primate species [2]. The guinea pig has been used
by number of trials. However, when session length was successfully as subjects in behavioral toxicology [1,22,52,
determined by elapsed time, acute administration of 64,65,78] and behavioral pharmacology [37,63,62,81]
physostigmine produced a decrease in percent task com- experiments. Furthermore, the available evidence suggests
pleted [26]. that guinea pigs are able to perform behavioral tasks if

The present data indicate that behavioral performances appropriate consideration is given to species differences
were not disrupted by repeated exposure to 0.2 LD50 GB [42,61].
despite WB AChE activity being inhibited by approximately The schedule of reinforcement that behavior is main-
80% following the first week of exposure (Figs. 1 and 3). In tained under has been shown to be a critical determinant of
guinea pigs, using an identical dosing regimen, red-blood the effects of drugs and toxicants [17,19,51]. Behavior
cell (RBC) AChE activity was inhibited by 20% following a maintained under fixed-ratio schedules of reinforcement is
single sc dose of 0.2 LD50 GB, whereas RBC AChE activity typically less sensitive to the effects of drugs and toxicants
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